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J. Phys. A: Math. Gen. 16 (1983) 4177-4182. Printed in Great Britain 

A note on the Atiyah-Singer index theorem 

Luis Alvarez-GaumC? 
Lyman Laboratory of Physics, Harvard University, Cambridge, Massachusetts 02138, USA 

Received 22 July 1983 

Abstract. A new proof of the Atiyah-Singer index theorem for the Dirac equation in the 
presence of external gauge and gravitational fields is presented. 

1. Introduction 

In the last few years there has been a growing interest in supersymmetry and its 
connections with global results in differential geometry and topology (Zumino 1977, 
Witten 1982a, b). Recently, a new proof of the Atiyah-Singer index theorem (Atiyah 
and Singer 1968a, b, 1971a, b, Atiyah and Segal 1968) based on supersymmetry was 
introduced (Alvarez-GaumC 1983) and improved mathematically in Getzler (1983). 
In this note, we complete the work started in Alvarez-GaumC (1983) by directly 
computing the Atiyah-Singer index density for the Dirac equation defined on an 
even-dimensional compact manifold M in the presence of an external gauge group G. 

The reason why supersymmetry is naturally related to the Atiyah-Singer index 
theorem is as follows. Let us consider a supersymmetric (0+ 1)-dimensional field 
theory (i.e. supersymmetric quantum mechanics). This theory has N conserved charges 
Q,, i = 1, .  . . , N, which anticommute with the fermion number operator (-l)F,  and 
which satisfy the supersymmetry algebra 

{ Q,, 0; 1 = 26,,H, (1) 

where H is the Hamiltonian of our (0+ 1)-dimensional field theory. let (2 Q* be any 
of the N supersymmetric charges Q,, i = 1 , .  . . , N. Then the operator J 2 S  = Q + Q* 
is Hermitian and satisfies S2 = H. Given an arbitrary eigenstate IE) of H, HIE)  = EIE),  
E # 0, SIE) is another state with the same energy. Therefore if IE) is a bosonic 
(fermionic) state, SIE) will be fermionic (bosonic), so that the non-zero energy states 
in the spectrum appear in Fermi-Bose pairs. Thus, the quantity Tr(- l )F eCPH (Witten 
1982c), will only receive contributions from the zero energy states, and can be shown 
to be a topological invariant of the quantum theory (Witten 1 9 8 2 ~ ) .  Since the bosonic 
zero energy states are determined by the solutions of the equation QIB) = 0, and the 
fermionic zero modes are given by Q*!F)  = 0, it follows that Index( 0)  =Kernel( Q) - 
Kernel (Q*) =Tr(-1IF e-PH, and we can calculate the index of Q if we know how to 
evaluate Tr(- l )F e-PH in the /3 + 0 limit (high temperature). In order to compute the 
trace we use the fact that it has a functional integral represention (Cecotti and Girardello 
19821, which is exactly the same as the functional integral representation for the 

{Ql, (-UF) = 0, {QL, Q,) = 0, i, j = 1, . . . , N, 
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partition function but with the fermions integrated over with periodic boundary 
conditions: 

P 

Tr(- l )Fe--PH =/pBcd+(f )d+(f )exp- /  0 LE(f)dt ,  (2) 

L E ( t )  is the Euclidean Lagrangian defining the (0+ 1)-dimensional field theory, 4( t ) ,  
$ ( t )  are the bosonic and fermionic fields in the theory, and PBC is just a shorthand 
notation to indicate that both + ( t ) ,  + ( t )  are integrated over with periodic boundary 
conditions in p, i.e. 4 ( p )  = qb(O), + ( p )  = +(O).  

In Alvarez-GaumC (1983) it was shown that the index theorem for all the classical 
complexes (DeRahm, Dirac, Hirzebruch and Dolbeault complexes) can be obtained 
using supersymmetry in the way just described, and the Lagrangian one has to use 
follows from the supersymmetric nonlinear a-model (de Vecchia and Ferrara 1977, 
Witten 1977, Freedman and Townsend 1981) that one obtains by dimensionally 
reducing from (1  + 1) to (0+ 1) dimensions: 

g,,(+) is the metric on the manifold M, r f k  is the Christoffel connection and Rllkl is 
the curvature tensor, +:(?), a = 1 , 2 ,  are real anticommuting fermi fields. 

From the above, it follows that the first step needed in the derivation of the index 
theorem for the Dirac equation in the presence of a gauge field is to find a (0+ 
1)-dimensional Lagrangian whose Hamiltonian is the square of the Dirac operator of 
interest. This is done in § 2. Section 3 contains the derivation of the index theorem, 
and 9: 4 presents the conclusions. 

2. The Dirac equation 

The Lagrangian defined by equation (3) is invariant under a supersymmetry transforma- 
tion which involves two constant anticommuting real Grassmann numbers E , ,  

(Freedman and Townsend 1981). Let us now impose the constraint +; = +; = +' /d2; 
(3) becomes: 

(4) 

with a single supersymmetry corresponding to = E ,  and the supersymmetry 
current is Q =g,,(4)+'4'. Introducing a vierbein frame e : ( 4 )  such that g,, = e;e;Sab, 
EieT = Si, and redefining the fermion fields: + a  = e:+', (4) becomes 

L = t g,, ( 4 ) i 'i ' + t ig,, ( 4 ) + ' ( d+ I /  d t + ril i k + ' )  

= 

where w;h is the spin connection. Note that ( 5 )  is invariant under local SO( n )  rotations: 
+" --* Lab(4)Gb,  w:b+ LzoTdLdb+ Laca,Lcb, Ga&"cLbd = Scd. If we canojically quan- 
tise (9, then {+", + b }  = Sab,  and the supercharge becomes Q = iyaDa/J2, so that the 
Hamiltonian is given by 

H=" 2 0  Y 0 Da ) 7 0, = E ; ( &  ++wlabaab), aab = $[ y', y ' ] .  (6) 
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0, is the covariant derivative acting on spinors, and the y"'s are the usual Dirac 
matrices satisfying { y a , y b }  = 2 S a b .  In this form of the theory, the fermion number 
operator (-l)F is simply ys. (Actually yd+l,  d = dim M.) 

Since we are interested in the Dirac equation in the presence of gauge interactions, 
let G be a gauge group acting on M with gauge connection AP(C$), and gauge curvature 
FP; (4 )  = a,Ap - + gf@'A/;'A: (g is the gauge coupling constant), ap = 
1,. . . , dim G. If the spinors on which the Dirac operator acts transform according to 
the representation of G generated by ( T")A,g, A,B = 1,. . . , dim T, the eigenvalue 
problem for the Dirac equation can be written: 

iyJ(aJ +~w,,bUab+igAyT")AS$AB = A ( $ , , ) A ,  TO' = T", (7)  
with only group indices explicitly indicated. In order to find the one-dimensional 
analogue of (7),  we introduce for each index A, A = 1,. . . , dim T, a pair of fermionic 
creation and annihilation operators: cT\, c,, such that 

{CA, CBI  = 0 ,  { c x ?  CBI = S A B  (8)  
In the Hilbert space generated by the c's we can consider states of the form 

(spinor indices being omitted). Then (7) can be recast as 

iy'(d, +iW,,b(+ab +igAyc*T*c)l$) = A 14). (10) 
A trivial feature of (7)  and (10) which will be useful to us later is that if 14, A )  is 

an eigenfunction of the Dirac equation with eigenvalue A # 0, then y51$, A )  is also an 
eigenfunction but with opposite eigenvalue. Now it is easy to generalise ( 5 )  so as to 
include the gauge field. Consider the Lagrangian 

L ig,, (4) 4 '4' i is,,$"( d$ b/d t f W J a b 4  I$ '1 
(11) + i C Z ( d CA / d ? - igA ( C$ ) 4 ' ( T" ) A  B C ~  ) - 1 i $ a $ bgF,"b C T\ T : B  Cg. 

The Hamiltonian generated by (1 1) is just the square of the operator appearing in the 
left-hand side of (7)t .  

Even though the theory defined by (11) has the desired Hamiltonian. Namely 
i(iB) ' ,  the theory is clearly not supersymmetric because there is a mismatch between 
the bosonic and fermionic degrees of freedom. Thus the arguments presented in the 
introduction to relate (2) and the index of the Dirac equation do not immediately 
apply. The desired result follows nonetheless because (8)' commutes with y5,  and 
as mentioned before, the non-zero eigenvalues of the Dirac equation come in pairs 
( A ,  - A ) ,  so that 

(12) 'rr ys e - ~ ( ~ B 1 2  = ,E=()(, ,  - + I ) -  n t = O ( y  - -1). 
5 -  5 -  

n E = ' ( y 5  = *l) stands for the number of zero eigenvalues of (iB)2 with ys = *l. Thus, 
computing the index of the Dirac operator is equivalent to the evaluation of (2) for 
the Lagrangian given in (1 l) ,  with the condition that the functional integral be restricted 

+There  is a subtlety in equation (11) related to the operator ordering chosen. When the gauge field is 
absent, the most natural prescription is to choose the operator ordering which guarantees that H = Q2 after 
canonical quantisation. Once this ordering is chosen for the purely geometrical part, there is no further 
ambiguity in ( 1  1).  
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to the space of one particle states for the (c*, c) fermions. This condition is necessary 
since we want to compute the index of io only in the representation T" of the gauge 
group G, and not in any of its tensor products. Since only the one-particle states of 
the c-fermions carry the representation T o ,  we must impose this constraint on the 
functional integral. We now proceed to calculate explicitly the index density for i@. 

3. The index density 

We showed in 9 2 that the index of the Dirac operator is given by (2),  where LE(t) is 
the Euclidean version of (11). In order to obtain the characteristic polynomial (or 
index density) for the Dirac operators, we only need to evaluate (12) in the p + 0 
limit. The functional integral representation of (12) is exactly as in (2) as far as 4 
and rC, are concerned, while the c's and c*'s are integrated over with antiperiodic 
boundary conditions. This follows from the fact that the trace has to be defined over 
one particle fermionic states for the c's. 

In the p + 0 limit, the functional integral is dominated by time-independent constant 
configurations, i.e., 4 ' ( t )  = 4;, G ' ( t )  = 4& cA = c: = 0, and the leading small-P 
behaviour is just given by the second-order terms in the expansion of L ( t )  around 
(&, GO). The expansion of $'( t ) ,  $'( t )  around the constant configurations is simplified 
if it is carried out using normal coordinates. After some algebra, the second-order 
term in the expansion of (11) is (Alvarez-GaumC et ai 1981, Alvarez-GaumC 1983): 

5' and q" are the fluctuations of 4' and 4" around (4&$;f )  and they are supposed 
to be non-constant in order to avoid overcounting. In this way, the functional integral 
splits nicely between constant and non-constant configurations. Notice also that we 
need not expand the c's because (11) is already second order in small fluctuations 
with respect to c-fermions. In terms of (131, the trace (12) decomposes into two 
factors: one is the partition function for a set of bosonic oscillators (the first two terms 
in (13)),  and the other is the trace over one particle states of e-pH', where H'  describes 
the Hamiltonian for a set of fermionic oscillators (the last two terms in (13)). The 
trace is normalised by dividing by the same trace with gauge and gravitational fields 
omitted. The third term in (1  3) does not contribute. Since the manifold has dimension 
2n ,  we have to include a factor of ( 2 ~ ) - "  coming from the usual Feynman measure 
for the constant modes, and a factor of i" since we are also integrating over constant 
real fermionic configurations: $& CL:* = $;. The result of this computation is 

where the xI's are the skew eigenvalues of the matrix $Rabcd$;+ltf, and the index density 
is obtained by expanding the integrand of (14) to 2nth order in the Go's. Any other 
terms in the expansion are irrelevant due to the presence of the Grassmann integration 
over the $o's. 

In a more geometrical language, the &'splay the same role as the basis of one-forms 
on the manifold: e" = e:( c#J)d4i. Then in terms of the curvature and gauge field strength 
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we can form the following two polynomials 

A ( M )  =n (wa/4n)/sinh(w,/4.rr). 
I 

In (16a)  the trace runs over the relevant representation of G under consideration, 
and the w,’s appearing in (166) are the formal skew eigenvalues of the antisymmetric 
matrix of two-forms (15a).  ch(F) is known in the mathematical literature as the Chern 
character of the principal bundle defined by the gauge field, and A ( M )  is known as 
the Dirac genus of the manifold M (see Eguchi et a1 (1980) for more details). In 
terms of (16a, b), we see that the result (14) for the index of iB can be rewritten in 
terms ,Of (16a, b) as the term proportional to the volume form in the product 
ch(F)A(M) 

This is the Atiyah-Singer index theorem for the Dirac equation on a compact manifold, 
including the contribution due to the presence of a gauge field. In particular, for a 
four-dimensional manifold 

JTr  RAR +? Tr FAF ind(iB) = - 
8 T  ‘i 

as should be (see for instance Eguchi et a1 (1980). 

4. Conclusions 

We have shown that by using ideas inspired by supersymmetry, we can obtain the 
general form of the Atiyah-Singer index theorem for the Dirac equation. In fact, a 
judicious choice of the bundle F together with equation (17) allows us to derive easily 
the index theorem for all the classical complexes. 

Another interesting aspect of the method presented here is that it allows a simplifica- 
tion of the computation of anomalies for axial vector currents (Adler 1969, Bell and 
Jackiw 1969, Gross and Jackiw 1972, for reviews of the anomalies see Adler 1970, 
Jackiw 1972). This computation ordinarily requires the evaluation of a trace of the 
form 2 ,  +L(x)L+,(x) ,  with L as an algebraic or differential operator, and where the 
+,’s are the eigenfunctions of the Dirac operator in the presence of external gravita- 
tional and/or gauge fields?. We have shown that these traces can easily be transformed 
into one-dimensional functional integrals, and thus, that the problem of computing 
anomalies is reduced to the somewhat simpler problem of computing partition functions 
in ordinary quantum mechanics. 

+ In the physics literature, there have been papers (Nielsen el a1 1977, 1978, Jackiw el a1 1978) where the 
local density for the Atiyah-Singer index theorem for the Dirac equation has been obtained in four 
dimensions, but using very different methods from ours. 
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